Object tracking

目标跟踪方法主要分为2大类,一类是相关滤波,一类是深度学习.

ot

目标跟踪任务

按任务类别分:

按任务计算类型分:

任务难点:

diff1

diff2

 

目标跟踪方法

按照模式划分:

按照时间顺序,目标跟踪的方法经历了从经典算法到基于核相关滤波算法,再到基于深度学习的跟踪算法的过程:

经典跟踪算法

早期的目标跟踪算法主要是根据目标建模或者对目标特征进行跟踪

  1. 基于目标模型建模的方法 通过对目标外观模型进行建模, 然后在之后的帧中找到目标.例如, 区域匹配、特征点跟踪、基于主动轮廓的跟踪算法、光流法等.最常用的是特征匹配法, 首先提取目标特征, 然后在后续的帧中找到最相似的特征进行目标定位, 常用的特征有: SIFT特征、SURF特征、Harris角点等。
  2. 基于搜索的方法 随着研究的深入, 人们发现基于目标模型建模的方法[6]对整张图片进行处理, 实时性差.人们将预测算法加入跟踪中, 在预测值附近进行目标搜索, 减少了搜索的范围.常见一类的预测算法有Kalman滤波、粒子滤波方法.另一种减小搜索范围的方法是内核方法:运用最速下降法的原理, 向梯度下降方向对目标模板逐步迭代, 直到迭代到最优位置.诸如, Meanshift、Camshift算法

光流法

光流法(Lucas-Kanade)的概念首先在1950年提出, 它是针对外观模型对视频序列中的像素进行操作.通过利用视频序列在相邻帧之间的像素关系, 寻找像素的位移变化来判断目标的运动状态, 实现对运动目标的跟踪.但是, 光流法适用的范围较小, 需要满足三种假设:图像的光照强度保持不变; 空间一致性, 即每个像素在不同帧中相邻点的位置不变, 这样便于求得最终的运动矢量; 时间连续.光流法适用于目标运动相对于帧率是缓慢的, 也就是两帧之间的目标位移不能太大.

Meanshift

Meanshift 方法是一种基于概率密度分布的跟踪方法,使目标的搜索一直沿着概率梯度上升的方向,迭代收敛到概率密度分布的局部峰值上。首先 Meanshift 会对目标进行建模,比如利用目标的颜色分布来描述目标,然后计算目标在下一帧图像上的概率分布,从而迭代得到局部最密集的区域。Meanshift 适用于目标的色彩模型和背景差异比较大的情形,早期也用于人脸跟踪。由于 Meanshift 方法的快速计算,它的很多改进方法也一直适用至今。

粒子滤波

粒子滤波(Particle Filter)方法是一种基于粒子分布统计的方法。以跟踪为例,首先对跟踪目标进行建模,并定义一种相似度度量确定粒子与目标的匹配程度。在目标搜索的过程中,它会按照一定的分布(比如均匀分布或高斯分布)撒一些粒子,统计这些粒子的相似度,确定目标可能的位置。在这些位置上,下一帧加入更多新的粒子,确保在更大概率上跟踪上目标。Kalman Filter 常被用于描述目标的运动模型,它不对目标的特征建模,而是对目标的运动模型进行了建模,常用于估计目标在下一帧的位置。

可以看到,传统的目标跟踪算法存在两个致命的缺陷:

  1. 没有将背景信息考虑在内, 导致在目标遮挡, 光照变化以及运动模糊等干扰下容易出现跟踪失败.
  2. 跟踪算法执行速度慢(每秒10帧左右), 无法满足实时性的要求.

基于核相关滤波的跟踪算法

接着,人们将通信领域的相关滤波(衡量两个信号的相似程度)引入到了目标跟踪中.一些基于相关滤波的跟踪算法(MOSSE、CSK、KCF、BACF、SAMF)等, 也随之产生, 速度可以达到数百帧每秒, 可以广泛地应用于实时跟踪系统中.其中不乏一些跟踪性能优良的跟踪器, 诸如SAMF、BACF在OTB数据集和VOT2015竞赛中取得优异成绩。

MOSSE

本文提出的相关滤波器(Correlation Filter)通过MOSSE(Minimum Output Sum of Squared Error (MOSSE) filter)算法实现,基本思想:越是相似的两个目标相关值越大,也就是视频帧中与初始化目标越相似,得到的相应也就越大。下图所示通过对比UMACE,ASEF,MOSSE等相关滤波算法,使输出目标中心最大化。

基于深度学习的跟踪算法

随着深度学习方法的广泛应用, 人们开始考虑将其应用到目标跟踪中[71].人们开始使用深度特征并取得了很好的效果.之后, 人们开始考虑用深度学习建立全新的跟踪框架, 进行目标跟踪.

在大数据背景下,利用深度学习训练网络模型,得到的卷积特征输出表达能力更强。在目标跟踪上,初期的应用方式是把网络学习到的特征,直接应用到相关滤波或 Struck 的跟踪框架里面,从而得到更好的跟踪结果,比如前面提到的 DeepSRDCF 方法。本质上卷积输出得到的特征表达,更优于 HOG 或 CN 特征,这也是深度学习的优势之一,但同时也带来了计算量的增加。

  1. 相比于光流法、Kalman、Meanshift等传统算法,相关滤波类算法跟踪速度更快,深度学习类方法精度高.
  2. 具有多特征融合以及深度特征的追踪器在跟踪精度方面的效果更好.
  3. 使用强大的分类器是实现良好跟踪的基础.
  4. 尺度的自适应以及模型的更新机制也影响着跟踪的精度.

otdata

ROLO

rolo

SiamMask

siammask

Deep SORT

 

TrackR-CNN

Tracktor

JDE

Review paper